Optimization Model for assessment environmental pollution under restricted input information

V.F. Raputa

Institute of Computational Mathematics and Mathematical Geophysics SB RAS Novosibirsk

The basic investigation phases and problems:

- 1. Measurement of environmental pollution
- 2. Optimization of observing system
- 3. Analysis of under-torch observing
- 4. Reconstruction of aerosol sedimentation fields
- 5. Definition of sources parameters

2. Optimization of observing system

1) Let experiment was carried out in N-1 point according to a plan εN-1. We find a point $\frac{1}{x}$ such, that $\frac{1}{x}$ \mathbf{r}

$$
d\left(\frac{\mathbf{r}}{x_N}, \frac{\mathbf{r}}{e_{N-1}}, \mathbf{q}_{N-1}\right) = \max_{x \in \Pi} d\left(\frac{\mathbf{r}}{x}, \frac{\mathbf{r}}{e_{N-1}}, \mathbf{q}_{N-1}\right),
$$

$$
d\left(\frac{\mathbf{r}}{x}, \frac{\mathbf{r}}{e_{N-1}}, \mathbf{q}_{N-1}\right) = \nabla^r q \cdot M^{-1} \cdot \nabla q.
$$
 (1)

2) In the point \overline{x}_N additional observation is carried out. \mathbf{I}^{\cdot}

3) We find estimations q_N^N by the observation according to the plan. r

$$
e_n = \frac{N-1}{N} \cdot e_{N-1} + \frac{1}{N} \cdot e\left(\frac{\mathbf{r}}{X_N}\right),\tag{2}
$$

3. Analysis of under-torch observing

$$
u(z)\frac{\partial q}{\partial x} - w\frac{\partial q}{\partial z} = \frac{\partial}{\partial z}k(z)\frac{\partial q}{\partial z} + \frac{\partial}{\partial y}v(z)\frac{\partial q}{\partial y}, \qquad (3)
$$

$$
k\frac{\partial q}{\partial z}\bigg|_{z=0} = 0 \,, \quad q\big|_{x \to \infty} \to 0 \,, \quad q\big|_{x=0} = Md(y)d(z-H) \,, \quad (4)
$$

$$
u(z) = u_1 \left(\frac{z}{z_1}\right)^n, \qquad k(z) = k_1 \left(\frac{z}{z_1}\right)^m, \qquad v(z) = k_0 u(z) \qquad (5)
$$

$$
q\left(\frac{\mathbf{r}}{x},\frac{\mathbf{r}}{y}\right) = \frac{q_1}{x^{3/2}} \exp\left(-\frac{q_2}{x} - \frac{q_3 y^2}{x}\right).
$$
 (6)

$$
q_1 = e^{3/2} \cdot q_{\text{max}} x_{\text{max}}^{3/2}, \quad q_2 = \frac{3}{2} x_{\text{max}}, \quad q_3 = \frac{1}{4k_0},
$$

$$
q_{w} \left(\frac{\mathbf{r}}{x, q} \right) = \frac{q_{1}}{x^{3/2}} \exp\left(-\frac{q_{2}}{x} - \frac{q_{3}y^{2}}{x} \right) \sum_{i=1}^{K} \frac{p_{i} q_{2}^{q_{4}w_{i}}}{\Gamma(1 + w_{i}q_{4}) x^{q_{4}w_{i}}} \tag{7}
$$

$$
q_{4} = \frac{1}{k_{1} (1 + n)}.
$$

$$
r_k = q\left(\frac{\mathbf{r}}{x_k}, \frac{\mathbf{1}}{q}\right) + x_k , \qquad (8)
$$

$$
E[X_n] = 0, \quad E[X_k X_j] = d_{kj} S_k^2, \quad k, j = \overline{1, N}.
$$

$$
J_N\left(\mathbf{q}\right) = \sum_{k=1}^N \mathbf{s}_k^{-2} \left[r_k - q\left(\mathbf{x}_k, \mathbf{q}\right) \right]^2.
$$
 (9)

Fig. 1а. *Surface concentration Dispersion of an light impurity concentration for xmax = 600 m, k0 = 0,8 m*

Fig. 1b. *Axial Dispersion of a concentration field of a heavy impurity for xmax = 1300 m, w = 20 sm/с*

4. Reconstruction of aerosol sedimentation fields

$$
\overline{q}_{\overline{t}} = \int_{0}^{\infty} q r_{t, \overline{t}}(q) dq \qquad (10)
$$

4.1. Аerosol pollution of local scale

а). Point source

$$
\overline{q}(r, j) = \int_{\Omega} q(r, j, K_1, u_1) P_1(K_1, u_1) dK_1 du_1
$$
\n(11)

$$
P_{1}(K_{1}, u_{1}) = p'(u_{1}) p''(1), \qquad I = \frac{k_{1}}{u_{1}}, \qquad (12)
$$

$$
p''(1) = d\left(1 - \overline{I}\right), \qquad p''(1) = \frac{a^{K-1} I^{-K}}{\Gamma(K-1)} e^{\frac{-a}{K}} \qquad (13)
$$

 $\overline{q}(rj)$ =

$$
= \frac{QP(j+180^\circ)}{\sqrt{2pj_0}r^2} \cdot \iint_{\Omega_1} \frac{1}{n+1} e^{\frac{-H^{n+1}}{l(1+n)^2}r} I p'(u_1) p''(I) dI du_1 =
$$

$$
= \frac{QP(j+180^\circ) \overline{I}}{\sqrt{2p} (1+n) j_0 r^2} e^{\frac{-H^{n+1}}{l(1+n)^2}r} \cdot \int_0^u p'(u_1) du_1 =
$$
 (14)

$$
= q_1 \frac{P(j + 180^\circ)}{r^2} e^{-\frac{q_2}{r}}
$$

$$
q_1 = \frac{Q\overline{I}}{\sqrt{2p} (1+n) \overline{J}_0} \int_0^u p'(u_1) du_1 , \qquad q_2 = \frac{H^{1+n}}{\overline{I} (1+n)^2} \quad (15)
$$

Monodisperse case

$$
q_{w}(r,j) = q_{1w} \cdot P(j + 180^{\circ}) \cdot r^{q_{3w}} \cdot e^{\frac{-q_{2}}{r}} \tag{16}
$$

$$
q_{1w} = \frac{QH^{(1+n)w_2}}{\sqrt{2pj_0(1+n)^{2w_2+1} \cdot \overline{I}^{w_2-1} \cdot \Gamma(1+w_2)}},
$$
(17)

$$
\boldsymbol{q}_{3w} = -2 - \boldsymbol{w}_2 , \qquad \qquad \boldsymbol{w}_2 = \frac{w}{(1+n)\overline{I}_1\,\overline{u}_1}
$$

Norilsk brass works

Fig. 2. The content of heavy metals in a firm deposit of snow water in a northeast direction from Norilsk brass works. Restored concentrations of **nicke**l and **lead** according local model.

Fig. 3. The content of heavy metals in a firm deposit of snow water in a northeast direction from Norilsk brass works. Restored concentrations **of copper** and **iron** according local model.

—— - calculated concentration.

Fig. 4. Reconstructed aerosol sedimentation fields of **nickels** from brass works **for winter period** (mg/l).

Fig. 5. Reconstructed aerosol sedimentation fields of **nickels** from brass works **for summer period** (mg/l).

(in % wise upper bound).

> - emission source point of snow sampling

б). Line source (motoway)

$$
q(x, y) = \qquad (18)
$$

$$
\int_{0}^{2p} \int_{L_1}^{L_2} \frac{S(a)}{2\sqrt{pK_0 a}} \cdot e^{-\frac{b^2}{4K_0 a}} \cdot P(j + 180^{\circ}) d\mathbf{h} d\mathbf{j}
$$

$$
a = x \cos j + (y - h) \sin j,
$$

$$
b = -x \sin j + (y - h) \cos j,
$$

S(a) – surface concentration from line source

Fig. 7. Specific content of lead in large dyspersated parts (а) and summary content in и fine-dyspersated and water-soluble parts (b).

Fig. 8. Fractional Distribution of lead at 50 m distance from motorway.

Fig. 9. Calculated and measured Specific content of **benzpyrene** in snow at the end of winter **1999** и **2000**.

Tabl. 1. **Summary estimations of PAC (polynuclear aromatic carbohydrates)**

Area source

Fig. 10. Recontracted numerable concentration field of 0,3 - 0,4 mkm fraction of sulfate aerosol in neighborhood of Selitrennoe Lake

Fig. 11. Measured and calculated means of numerable concentrations for fine fractions of sulfate aerosol Distance from the lake along observation route is pointed on x axis. —— - calculated curve,

- – mesurement at reference points,
	- – mesurement at contral points.

Fig. 12. Mass concentration of sulfate aerosol

$$
Q(x, y) = \frac{1}{2p uH} \int_{S} \frac{m(x, h) \cdot P\left(\arctg \frac{y - h}{x - x} + 180^{\circ} \right)}{\sqrt{(x - x)^{2} + (y - h)^{2}}} dx dh
$$

Method of asymptote decomposition

$$
Q_{1}(x, y) = \frac{c}{r} \iint_{S} m(x, h)
$$
\n
$$
\left\{ Z\left(j_{0}\right) + \left(\frac{p}{2} - 1\right) Z'\left(j_{0}\right) - Z'\left(j_{0}\right) \left(\frac{x}{r^{2}}x + \frac{y}{r^{2}}h\right) \right\} dxdh =
$$
\n
$$
= q_{1} \frac{Z\left(j_{0}\right) + \left(\frac{p}{2} - 1\right) Z'\left(j_{0}\right)}{r} + q_{2} \frac{Z'\left(j_{0}\right)x}{r^{3}} + q_{3} \frac{Z'\left(j_{0}\right)y}{r^{3}}
$$
\n(20)

Fig. 13. Route Plan of snow mapping in neighborhood of **Irkutsk**

Fig. 14. Sedimentation levels of **beryllium** along Irkutsk-Listvyanka rout over winter period **1993-1994, 1994-1995, 1995-1996**

Fig. 15. Sedimentation levels of **beryllium** along Irkutsk-Bayanday rout over winter period **1994-1995 (а), 1995-1996 (b)**

High instant source

$$
q_w|_{y=z=0} = \frac{2M \cdot k_z}{\sqrt{p s_1 u H^2 k_y}} e^{-S^2} \left[1 - S_2 \sqrt{S_1} r(s)\right]
$$
 (21)

$$
S_1 = \frac{4k_z x}{uH^2}
$$

2 $-4k_z$ *wH k* $S_2 =$ $r(\mathbf{s}) = e^{\mathbf{s}^2} erf(\mathbf{s})$

³ $4k_z$ *wH k* $q_3 =$ $_2$, \mathbf{y}_3 , $_1$ $_2$ \mathbf{y}_2 $_3$ 2 1 $f(x,q_2,q_3) = \frac{1}{\sqrt{1 - 4}} + q_2 \cdot q_3 \sqrt{x}$ *x* $w(x, q_2, q_3) = \frac{1}{q_2} + q_2 \cdot q_3$ *q* $=$ $\frac{1}{\sqrt{1-\frac{1}{\sqrt{1$

(22) $\overline{\mathfrak{h}}$ 2 43 2 $f(x, q) = {n \over 2} e^{-W} \left[1 - q_2 q_3 \sqrt{x r(w)}\right]$ *x e* $q_{12} - w$ $q = \frac{q_1}{e^{-w^2}} \left[1 - q_2 q_3 \sqrt{x} r(w)\right]$ $\left[\frac{1-q_2q_3\sqrt{\lambda}\Gamma(W)}{\lambda}\right]$ u

Map of East Ural nuclear trace

а) near zone (less than 30 km)

$$
p_1(x, q_1, q_2) \approx \frac{C}{x} \cdot e^{-\frac{w^2}{4k_z u}x} \cdot \int_0^h f(H) dH = \frac{q_1}{x} e^{-q_2 x}
$$
 (23)

$$
q_1 = C \cdot \int_0^h f(H) dH \qquad q_2 = \frac{w^2}{4k_z u}
$$

$$
f(H) = \frac{M(H)}{2\sqrt{p}k_y} \cdot e^{-2wH}
$$

h - high bound of pollution cloud C – interaction coefficient

6) Far zone pollution
\n
$$
p_2(x) = C \int_0^h M(H) q(x, H) c_w(x, H) dH
$$
\n(24)

$$
q(x,H) = q_{\text{max}} \exp\left[\frac{3}{2}\left(1 - \frac{x_{\text{max}}}{x}\right)\right] \left(\frac{x_{\text{max}}}{x}\right)^{\frac{3}{2}}
$$

$$
c_w(x,H) = \left(\frac{1.5x_{\text{max}}}{x}\right)^r \qquad \qquad r = \frac{w}{k_1(1+n)}
$$

$$
\exp(-1.5 x_{\text{max}}/x) \to 1 \qquad x \to \infty
$$

$$
p_2(x) \approx \frac{q_1}{x^{1.5+q_2}}
$$
 (25)

 $q_2 = r$

Fig. 16. Reconstructed density of PH sedimentation along axis according ВУРС data (1957)

Fig. 17. Reconstructed density of PH sedimentation along

axis according ВУРС data (1997)

k5=1.15, *n*=7

$$
\frac{5. \text{ Estimation of summary pollution emission}}{7 \text{ask 1}} \qquad R\left(\frac{\mathbf{r}}{q}\right) = \sum_{m=1}^{M} q_m \rightarrow \max_{q \in \Omega} \tag{27}
$$
\n
$$
q\left(\frac{\mathbf{r}}{x_n}, t, \frac{1}{q}\right) \le r_n, \quad n = \overline{1, N}. \qquad (28)
$$
\n
$$
\Omega = \left\{q_m : 0 \le A_m \le q_m \le B_m, \quad m = \overline{1, M}\right\},
$$
\n
$$
\frac{\text{Task 2}}{R\left(\frac{\mathbf{r}}{q}\right)} = \sum_{m=1}^{M} q_m \rightarrow \min_{q \in \Omega} \qquad (29)
$$
\n
$$
q\left(\frac{\mathbf{r}}{x_n}, t, \frac{1}{q}\right) \ge y_n, \qquad n = \overline{1, N}.
$$

$$
q(x,t) = c(x,z,t) \frac{1}{\sqrt{2ps_y}} e^{-y^2/2s_y^2}.
$$
 (30)

$$
\frac{\partial c}{\partial t} + \frac{\partial uc}{\partial x} - \frac{\partial}{\partial z} k_z \frac{\partial c}{\partial z} = \mathbf{j} (x, z)
$$

$$
\frac{\partial u}{\partial t} = -\frac{\partial}{\partial z} \overline{u'w'} + f v, \quad \frac{\partial q}{\partial t} = -\frac{\partial}{\partial z} \overline{q'w'} + e_r + e_f,
$$
\n
$$
\frac{\partial v}{\partial t} = -\frac{\partial}{\partial z} \overline{v'w'} - fu, \quad \frac{\partial q}{\partial t} = -\frac{\partial}{\partial z} \overline{q'w'} - e_c + e_l,
$$
\n(31)
\n
$$
\frac{\partial p}{\partial z} = -g r, \qquad q = \left(\frac{p_0}{p}\right)^g, \quad p = rRT(1 + 0.61q),
$$

Fig. 18. Estimation of low and high bounds of summary power by rout observing data : **▬▬▬** - 2 km,

$$
\frac{1}{100} - \frac{1}{100} - \frac{1}{100} + \frac{1}{100} + \cdots
$$

Conclusion

– Numerical analyze of monitoring data shows existence of **quite simple regularities** of gas and aerosol territory pollution formation

– Possibility of construction of quality models of long-term aerosol territory pollution by different types sources using small **number measured points** is shown. **Estimations of summary emission** are obtained using these models.

– **Snow cover monitoring** is very efficiency for control of emissions and pollution levels near enterprises.

– Using procedures of **optimal planning of observation** system lets essentially arise accuracy of estimation parameters and pollution fields.

Performed results are the base for working-out of **Complex monitoring system** of local and region territory pollution.